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LETTER TO THE EDITOR 

Molecular-field theory of interface pinning in an external 
potential 

Theodore W Burkhardt and Vitor R Vieirat 
Institut Laue-Langevin, 156 X, F-38042 Grenoble Cedex, France 

Received 9 March 1981 

Abstract. The behaviour of an interface subject to an external pinning force is studied in a 
molecular-field theory. In the case of a pinning force applied near the edge of the system, 
one finds a finite-temperature localisation-delocalisation transition in the SOS model but 
not in the Gaussian model. 

Abraham (1980) has studied a localisation-delocalisation transition associated with the 
pinning of a domain wall in an inhomogeneous two-dimensional Ising model. In his 
model it is energetically favourable for the domain wall to pass near one edge of the 
system, where there is a row of weaker bonds. Below a transition temperature T,, 
which is less than the bulk critical temperature T,, the interface is bound a finite distance 
from this edge and is smooth, i.e. its root-mean-square width is finite. For TD < T < T, 
the interface is no longer bound and is rough, i.e. the root-mean-square width diverges. 

Stimulated by Abraham’s work several authors (Burkhardt 1981, Chalker 1981, 
Chui and Weeks 1981, Kroll 1981, van Leeuwen and Hilhorst 1981) have studied the 
pinning of the one-dimensional interface in the planar solid-on-solid (SOS) model 
(Temperley 1952, Leamey et a1 1975, Muller-Krumbhaar 1977), a simple special case 
of the Ising model, with various types of external potentials. In the case of a short-range 
pinning force applied a finite distance from one edge of the system, there is a 
localisation-delocalisation transition which is qualitatively the same as that discussed 
by Abraham. If the pinning force is applied an infinite rather than a finite distance from 
the edge, the interface remains smooth and pinned at all finite temperatures. Laj- 
zerowicz and Vallade (1981) have reached similar conclusions for a continuum model 
with a one-dimensional interface. 

It would be interesting to know more about such pinning phenomena in higher 
dimensions, where the interface fluctuations are weaker. In particular, possible pinning 
effects should be kept in mind in designing and analysing experiments (Balibar and 
Castaing 1980, Avron et a1 1980) to look for the roughening transition (Leamy et a1 
1975, Muller-Krumbhaar 1977) in three dimensions. In this Letter, a modest step 
toward understanding the higher-dimensional behaviour is taken. SOS and Gaussian 
models with an interface subject to a pinning force are examined in a molecular-field 
theory which may be qualitatively correct in sufficiently high dimensions. Similar 
molecular-field theories have been considered by Temkin (1966) and Swendsen (1977) 
in the absence of pinning forces. In the case of a pinning force applied a finite distance 
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from the edge of the system, the molecular-field theory predicts a localisation- 
delocalisation transition in the SOS model but not in the Gaussian model. Since 
molecular-field theory, which underestimates the interface fluctuations, and the exact 
solution for d = 2 dimensions, where the interface fluctuations are stronger than in 
d > 2, both predict a localisation-delocalisation transition in the SOS model, the model 
probably really has such a transition for all d 3 2. 

The systems considered here have the Hamiltonian 

with r = 1 and 2 corresponding to the SOS and Gaussian models, respectively. x i  denotes 
the perpendicular distance of the interface from point i on a d - 1 dimensional lattice, as 
shown for d = 2 in figure 1. The x i  vary continuously in the interval 0 < x i  < 00. It is 
straightforward to extend the molecular-field theory described below to an integer 
spectrum for the x i .  In d = 2 dimensions continuous and integer spectra lead to 
transitions in the SOS model which are qualitatively the same (Burkhardt 1981). The 
energy contribution from the first sum in ( l ) ,  which only involves interactions between 
neighbouring height variables, is minimised by a flat horizontal interface. The quantity 
U ( x i )  is the pinning potential. The case of a square-well potential is considered 
explicitly below. 

Figure 1. The SOS and Gaussian models in d = 2 dimensions. 

The molecular-field theory discussed here is based on the variational principle (see, 
for example, Falk 1970) 

F s @ [ p ]  = Tr p H +  kBT Tr p In p. ( 2 )  
Here F is the exact free energy, and p is any trial density matrix satisfying Tr p = 1. The 
symbol Tr represents integration over all N displacement variables x i .  The equality 
holds for the canonical distribution p a exp(-H/kB T ) .  With the variational ansatz 
p = P(xl)P(x2) . . . P(xN),  which neglects correlations between the xi ,  (2) becomes 

@/kBTN = y lo dx lo dy P(x)lx - y l rP (y )  + 5 dx P ( x ) (  V ( x )  +In P ( x ) )  

where K = qJ/kBT, q being the coordination number of the d - 1 dimensional lattice, 
and where V ( x ) =  U(x) /kBT.  Requiring that the variational derivative of @ with 

m W 

(3) 
K "  

0 
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respect to P(x)  vanish yields the integral equation 
m 

A -  V(x)-KI0  dylx-yl‘P(y)) (4) 

for the optimal molecular-field distribution function. The quantity A is a Lagrange 
multiplier chosen to satisfy the normalisation condition Tr p = 1. Equation (4) has an 
obvious molecular-field form and could have been written down directly without 
recourse to the variational principle. 

In the Gaussian case r = 2 equation (4) is equivalent to 

~ ( x ) = e x p [ ~ -  v(x)-K(x-(x))’] ( 5 )  

where B is a normalisation constant and the mean value (x) satisfies the self-consistency 
condition 

.CD 

O =  J dx(x -(x)) exp[-V(x)-K(x-(x))’]. 
0 

The integral in (6) can be readily evaluated for the square-well potential U ( x ) =  
- Uo, 0 < x < R, and U(x) = 0, x > R, which corresponds to a pinning force at the edge 
of the system. Solving for (x), one obtains 

R 1  
2 2KR (x) =---ln(l -e-”O) (7 )  

where Vo = Uo/kBT.  
According to (7)  (x) increases monotonically with T but remains finite as long as T is 

finite. It is easy to verify that ( 5 )  with (x) given by (7)  yields a lower free energy than any 
other choice for (x), including (x)=co. Thus the molecular-field theory predicts a 
localised interface in the Gaussian model with a square-well pinning potential at the 
edge for all finite temperatures. 

The corresponding molecular-field calculation for the SOS model leads to a different 
conclusion. Equation (4) with r = 1 implies the differential equation 

d2 
- ln(e”‘”’P(x)) +2KP(x)  = 0. 
dx 

For the square-well potential considered above, the solution is 

P(x) = (a2/K)[COSh(ax -U)]-’ x > R  

P(x) = (p’/K)[cOSh(&t - b)]-’ O < x < R .  

The integration constants a ,  p, a, and b are uniquely determined by the normalisation 
condition Jr dx P(x)  = 1 and by three additional requirements which follow from (4): 
dln(P(x) exp V(x))/dx = K at x = 0, and P(x)  exp V(x) and its derivative with respect 
to x are continuous at x = R. These conditions imply 

2 a / K  = 1 (11) 
2P/K = coth b = tanh(KR/2 - a)/tanh(pR - b) (12) 

(2p/K)2 = eVo cosh2(pR - b)/cosh2(KR/2 - a) .  (13) 

The interface described by (9) and (10) is pinned if the values of the constants a and 
b are finite. Combining (11) and (12) for a,  b >> 1, one finds that a and b diverge as 
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--+ ln{[eKR(l - e-vo)]1'2 - l }  on approaching the critical surface of localisation-delo- 
calisation transitions 

K,(v,,, R)R = -In(I -e-vo) (14) 

where the argument of the logarithm vanishes. The exact (Burkhardt 1981) critical 
coupling K,(Vo, R )  for d = q  = 2 is larger than the molecular-field result (14), as 
expected. 

The logarithmic divergence of a and b on approaching the critical surface implies 
that the mean distance (x) of the interface from the edge of the system diverges as 
-In( TD - T )  on approaching the transition temperature TD from below at fixed J ,  UO, 
and R. In the exact results for d = q = 2 one finds the stronger divergence (x)K 
(TD-T)-'. A lengthy calculation shows that the specific heat in the molecular-field 
theory is discontinuous at TD, as in the exact solution for d = q = 2. 

For T > TD the distribution function which minimises the mean-field free energy has 
the form 

P(x)  = (K/4)[cosh(K~/2)]-~ (15) 

where the origin of coordinates has now been chosen so that x = *CO correspond to 
edges of the system. P ( x )  vanishes at the edges of the system and is independent of 
U(x).  If the regions above and below the interface are defined to be regions of spin 1 
and -1 respectively, (15) implies the magnetisation profile 

;U 

dy P ( y )  - 5 dy P(y) = tanh(Kx/2) 
X 

which is familiar from mean-field theories (Temkin 1966, Swendson 1977, Landau 
1965) of the interface without a pinning potential. The mean-square width (x') of the 
interface calculated with (15) is finite. Thus the molecular-field theory predicts a 
smooth interface for T > TD. This is not surprising. From quite general arguments 
(Buff et a1 1980, Chui and Weeks 1976, Kosterlitz 1977) one expects the unbound 
interface to be rough for d < 3 and smooth for d > 3. Molecular-field theories generally 
become qualitatively correct in sufficiently high dimensions, if at all. 

It is straightforward to carry out a molecular-field calculation for the SOS model with 
the square-well potential infinitely far from the edge. One finds a smooth localised 
interface for all finite temperatures. This is to be expected, since the exact solution for 
d = 2 indicates that the interface is always localised, and in higher dimensions the 
interface fluctuations are weaker. A similar molecular-field calculation for the Gaus- 
sian model also always indicates a pinned interface. 

As mentioned in the introductory paragraphs, one can argue on the basis of the 
molecular-field theory discussed here and the exact results for d = 2 that there really is a 
finite-temperature localisation-delocalisation transition in the SOS model with a pin- 
ning potential at the edge for all d 5 2. At sufficiently low but non-zero temperatures 
the interface is certainly localised, since it is localised in d = 2, where the fluctuations are 
strongest. Since molecular-field theory, which underestimates fluctuations, nonethe- 
less predicts a transition to a delocalised state, the transition probably does indeed exist 
for all d 2 2. Whether the absence of a similar transition in the Gaussian model is a real 
effect or an erroneous prediction of the molecular-field theory remains to be seen. 

The most interesting dimension in which to study the localisation-delocalisation 
transition is, of course, d = 3, where in the absence of a pinning potential one expects 
finite-temperature roughening transitions in the discrete SOS and Gaussian models 
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(Leamy et a1 1975, Muller-Krumbhaar 1977). If a strong pinning force is included near 
the edge of the S O S  system, there is probably just a single transition from a smooth 
localised interface to a rough delocalised interface. In the case of a weak pinning force, 
the interface may remain smooth during the localisation-delocalisation transition and 
undergo a separate roughening transition at a higher temperature. However, the 
subtleties of the marginal dimension d = 3 are clearly beyond the capabilities of the 
simple molecular-field approach considered here. 
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